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ABSTRACT

In this paper we study a model fbr the population tx:ansition probabi‘lities
for a branching process co‘r_nposed of partic}es difff.tsing in ‘Ia finite interval, The
‘model is in generai non-Markoviani since wé assum.e the branching transformation
probabilities@fqr a particl.e.deper'xd on ilts agé and position, The process is
‘descrik‘)e'd by the random' nqmbér -Nt( x) of particles inl the interlva}. I at time t
that are generated by a sinéie particle initially at thé point X in. I. By
‘ conside;ihg .Nt( X) és a fe'g.enex;at'ive proces.s with respect to the random age and
posit:ic')n V(.Jf 'thé initial éarticle when it is transformed, we develop a functional
‘ eqv_.iat_ion for f:he genérating' function for Nt(x) . This functional equation is th.e
basis for our study of the population probabilities P( Nt(x) =n), N=0, 1,2, eeey
as functionof x in I and t in [0, %),

Our principal result concerns the extension to our model of the fundamental

"’ result on the probability for ultimate extinction in a Galton-Watson branching

process, [3, Chapter XII]: Letting fO(X) be the probability for ultimate extinction
in a process generated by a particle initially at x, we give a necessary and
sufficient condition for f(')(x) =1, Wg also give a characterization of fo(x) ’

. X in I, as the minimal positive sbiution of a functional equation which is

asymptotically. related to the basic equation.



EXTINCTION PROBABILITIES FOR AGE AND POSITION-DEPENDENT BRANCHING PROCESSES

Howard E, Conner

Introduction .

The' process is composed of particles diffﬁsing in'a bounded open interval
IO, énd it is generated by one particle initially ét x in- I0 .i The éiiffusi.on. is
represented by the conditional probability density; funciéion (p..d,f) - plx, y, .s)',
where p(x, v; s)dy is the probability for a particle at x at time t to beat y
at time t+ s, assuming it has not been previously to the boundary I° of I0 .

Therefore, we assume
1.1 (a) p(x,y;8) =0for xin I'y vy in T and 0<s < ® and

(b) p(x,y;s) 1is non-negative and continuous for x, y in I and

0<s<x,

The boundary L' is an absorbing barrier for which a{x, t) 1is the probability
distribution function for a particle initially at x to be absorbed at IT© 'within'the

time t and a(x) =1lim a(x, t}) is the probability for the ultimate absorption at T
4 t> . : . - .

for a particle’at x, Consequently, we assume

Sponsored by the Mathematics Research Center, U.S. Army, Madison, Wisconsin;
under Contract No. : DA-11-022-ORID-2059. )
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1.2 (a) a(x, t) is non-negative and continuous for x in I and

0 < t< o with a(x,t) =1 for x in I' and 0 <t <,

(b) foreach x in I, a(x, t) is nondecreasing as t increases and

i

(c) a(x)

lim a(x, t) is continuous for x in I with
0 : .

a(x) =1 for x in ' and. not identically 1 for x in I0 ..
Each particle has an independeﬁt random life span with the p.d.f. ' g(s) '.where
g{s)ds is the probability for a particle formed at time T to end its life at time

T+ s; and so, we assume
1,3 : g(s) is non-negative and continuous for 0 < s < o,

. A particle whose life has ended at the agé T and at the point x in I0 is replaced

" by a random number k of particles with probability b'k(x » T) and the expected
‘ : _ o o
number of particles with which it is replaced is Z kbi{(x, t) » Therefore, we
' ‘ ' k=1 '
assume '

1,4 ‘ (a) bk(x, s) is a non-negative continuous function for x in -I0 and' .

.O<s<°0,




#390 -3-

0

(B) ), Bylx,s) =1 for x in I, 0<s <,
k=0
o0
(c) p(x, s) = Z kbk(x, s) is positive, bounded and continuous
k=1 ,

for x in I0 and 0 < s <%,
At any given time t a particlé initially at x in I0
1.5 (a) has been ab'sorbed’ét‘ T with"pl_*obabil'ity a(x, t) or
©  (b) has'ended its life in IO with probability f fp(x, y;s)g(s)dsdy or -

(c) is diffusing in T with probability b(x,'t) :

TUltimately a particie is either absorbed at I or transformed into new particles at

some interior point x. Conséquently, we assume

1.6 b(x, t) 1is non-negative and continuous with ‘lim b(x, t)= 0 as t—=» «

for x in I0 and 0 <t <%,
'Since the events described in 1.5 are mutually exclusive and exhaustive, we assume

1.7 (@) 'l=a(x,t) +b(x,t)+ f f"p(x,'y;‘S)g( s)dsdy and-
. R 10 ‘ :
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0 .

(b) 1=a(x)+ [ [ plx,v;s)gls)dsdy
. CTo S
for x in I and 0 <t <®, where the integral in (b) is assumed to converge
uniformly for x in I,
We deﬁne the g‘eAnerating function for the t'ral_'ls.itiori probabilitiés

(35 1) = P(NL(R) = k) y k=0, 1,2, wey by,

. . : o ,
1.8 f(x,t;z) :_Z}ffk(x,t)zk ; f(x} t51) =1,

k=0 '
‘defined for x in I, 0 V_<_ t and lzl < 1. If the initial particle is réplacéd at
t1:1e age s byk _particles at the point y 1n IO’ the géneratirig furiction for the
' Vpbpulation size at t>s is thén‘ fk(y, t-s;z) . Since the probability for the
initial particie to .be replaced at an age s with k particles at y is given by
bk(y, As) p(x, v; s)g{s)dsdy, | this and the previous discussion suggests f(x, t; z)

satisfies the functional equation,

. t
1.9 f(x, t; z) = a(x, t) + zb(x, t) + ff hl v, s; £(y, t-s; 2)Ip(%, v; s)g(s)dsdy
. 10 :

for x in I, 0 <t <% and [zl <1, where

. _ 0 o
1,10 h(x,t;z)=z bk(x, t)zk s hix, t; 1) =1
‘ k=0 ‘

Having formally derived 1, 9, it is necessary to .establihsh the existence of a
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.unique solution f(x, t; 2) bounded by. 1 which is a generafing ff.ln,ction in z
for each x and t,

Before doing this, we introduce:

' , N ' E ,

111 CK(x,¥) = [ iy, s)p(x,¥; s)gls)ds
the expected number of particles’ réﬁ)lacing, a pértié:ie initié}ily at x 'wh.i.qh ends’
its life at y., We infer from the conditions of nonnegativify,"contihuity and uniform
integrability that K(x, y) 'is nonnegative and continuous fof'_ i ) v in I. Therefore

K(x, y) defines a linear integral operator K

1.12 K%)= [ K(x, )E(y)dy , x in I
I : ' _
(a) tfansfbrming the class of functions confi'nuo'us on I _iht’o the

subclass of functions vanishing on I and '

(b) transforming the convex cone of nonnegative functions on

I into itself.

Consequently, the operator K has special spectrél'proper'tiés similar to those for
a matrix operator with nonnegative elements, Of thése we usé the existence of a
positive characteristic number of minimum modulus to form a necessary and sufficient

condition for. ultimate extinction for.‘N't( %) 'Wi‘th-'_probab'il'ity. 1,
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A ‘numbér of fnathematicél rﬁodéls for branching prpf;es'seé‘.afe _cévé_re'd B
in thé papéfs o_f T. E. Ha;fis-, 4 [4].. -L'im'iting. fhéorerris' fo'r _s_pec:i%i.c models with'
transforma’tion probabilitiés 'c_iepe‘nc_lihg on a“ge" or position are also giveﬁ' in thésé -
Apépérs”and ‘in papers. by R. Bellman ahdfT.. B H_arris;' fl‘], N._.Levipso_n; 16] and
" the é‘lz_uthor, [“2]: ‘The problem of ultimate e’xtiﬁction for a t_ime—fiéperideﬁf_:vb'rapc};ing-_‘

p'rp_cess is given in papers by B. A. Sevést'j'anov, [7, 8].

§2. Existence of generating function.

The existence of a solution to 1.'9 is given by the .

Theorem 2. 1.. Suppose a(x,t), B(x, t); p(x, vit), a(t), h(x,t;2) - and (%, t)
 satisfy the conditions given in 1.1-1.4, 1.6,1.7 and 1. 10. .With these conditions,
‘there exists a unique- solution f(x, t;z) to 1.9 defined for x in I,',OE t <o .
and |zl <1 and satisfying:

(a) _f(x,‘ t; z) is éontinuous on its domain,

(b) lf(x,t;2)] <1 with f(x,t;1) =1 on'its domain and

(c). f.or.each x in I and -t > 0, £(x,t;2z) is analytic'on
| z| <1 and thereforé has a representation

N 0
fotz) =), £ 06t 2"
. ’ k=0 "~ . .

where each f (% t) is continuous and nonnegative for x in I.

" and 0<t.
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'_Proof. We first list some prdperties of h(x, 't; z) which'follolw direétly from -

g the con:fi.iti.o_n 1.4 and .l. 1.(5‘ and an application of tb’e méaﬁ' ‘.valu‘e thepl.rem{
b ok by S sy
:(i.i)_ .' .Qf- |h'(>;, t %)l %Kh(ki,;t;..l'zr},- |
‘ (111) 4_0 5 IaiZ -}Al.(_x;_"c“;:z)zt‘_}fl.p.(k, t). . an';:'{.
St Ine, s 2) -l_h(x_,-‘t;’ s u, ¢ )Iz - wl

< < .

for x in I, 0 <t, |zl and lwl <1 and d<+1

We define the sequence {fr;(x, t; z) } with fo(x, t; 2) =0 by" ‘

2,2 . fn;rl(x,t;Z)=a(x,t)+zb(x,t> +f fh[Y, S;fn(y,t-S, z) ] plx, v;s)g(s)dsdy
L N , T o0 : :

"~ for’ x in I, 0<t.and lzl.<1,

An induction argufnent using properties 2,1 and 1.7 'impliés for
each n, n=0, 1, 2; vos 3

2.3 : -:lfl;l'(%,t;z)lfl-an.d‘f'n.(x,t;l)s'l

for x in I, 0.<t and | 2l Lf‘i-'
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A second induction argumenf using the continuity-'proberties_of.the given.
functions- and the analyticity of h(x, t;.z) in z showé eé’ch fﬁ(x, t; z) is:
continuous for x in I, t> 0 and |z| <1 andforeach x in I and"t> 0

it is analytic for [z) <1. Another induction argument using the nonnegativity
. N Lk : - _
~of the given functions shows thé derivatives (5-5) féx, t; 0). are continuous
.. and nonnegative for k = 0,1, 2, «. . Therefore we assert each £ (x,t;2)

~has the repreééntation for x in I, 0<t and: | z| <1 given by

. .
\
2.4 £ (x,ti2) = )i

k(x, t)Azk with
k .

.
o ™

fn k(x, t) continuous and nonnegative, k=0, 1, 2, ses .
9
We use 2,1(iv) and 2,2 to make the following estimate, for general n

t
2.5 |fn+l(x,t;z)-fn(x,t;z)l§ OfIflfn(y,t—s;z)—fn_l(y,t-s;z)[p(y,s)p(x,y;s)g(s)dsdy

on x in I, 0 <t and |z| < 1. The substitution of 2.3 with n=1 into the

integrand of 2,5 with n=1 gives

l£,(x, t3 2) - fi(xti2) < [ fuy,s)p(x, v; s)a(s)dsdy.
: ' ‘ 01

' Setting A(T):max'{fp(y,s)p(x,y,s)g(s)dy| x in I, 0 <s<T} for 0<T,
I
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we have lfz(.x, t; z) "'fl('X, t;2)l <tA(T); and so, by induction, we have for

= 0,1, 23 eens
2.6 . lvfn+ 1(x, t; z) - fn(x, t; ‘z)‘I" E tTlAn(T')'/n!'.

on x in I, O_<_1':§,T~andA l'zll‘fl_'.-'

We infer from 2.6 that the fn( x'l, t z) >con‘\}'érge as n— 05_ ‘t'cla a limit
f(x, t; z) and that this convergence is unifpfm fbr any T>0 on X in '-I,..O _<_"t < T
and | z| <1, Therefore using tghe Moore-’-'Weiersl-trass ‘theovr;er'ris, we know |
(a) f(x,t;=z) is cont_inuous for x m I, ti 0 and [zl < 1,
(b) £(x, t; z) is analytic in |zl <1 foreach x in I, 0 <t and
by letting n—~ © in‘ 2.2,
(c) f(x,t;z) is a solutionto 1,9 for x in I, 0<‘t and lzlj 1.
The properties If(x, t; z) l <1 and- f(x, t';_ 1)= 1 are consequénces of the
convergence and 2.3. We use theVCE_i-uchS/ formul.a to write for_each x in I and

0<t,

: 2w
1 16, -ike
2.7 £ 0 =50 Of E(x,t,e e de

Since fn(x‘, t; z) converges uniformly on x in I, 0 < t <T and [ z| <1 for each

T > 0, we know the right side of 2,7 converges uniformly on the same sets to
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fk‘("X, t.) ,= k—l,' a—az’f(x;. t; 0). Thérefofe, for any T >0 _‘eaA(?h fk(:;c,tt) ' is:‘t:h.e
un.iform_,lir'nit on x in I, O_f t<T and'_" |z| <1 of the qbnfinﬁous nohnééétive ‘.
functivoins fn‘, ]'q(x, f)._giver; in '2.4 ;'aﬁd- so, we .kno'v'v‘ea‘ch .f];(x, t) is.
. éontinuous and nqn‘r‘iveg.'ative for x in I and - 0 < t..v
To _comblé_te the proof we must show £hé_ éolution f(x, t; z) is imiqué .
in the class of functions contihuoué and boﬁnded.ih ma@;.nituci.élby. lLon x in I, :
0<t and | 2] j 1. Suppose g(x, t;z) is va continuous fﬁnctiqn ‘withl‘i. |

lg(x, t; z)|§ lon x in I, 05 t and |zl <1 satisfying 1,9 and consider

r(x, t; z) = If(x, t;' z) -g(x, t;2) 1. Since Ig(x, t;_z)|§ 1 we can use-

1.9 and 2,1(1v) to make the estimate

t
2.8 Hxyty2) < [ [xly, t-s, 2)uly, s)p(x, v; s)g(s)dyds.
01
-\t ,
Letting R(T,\, 2z) = max {r(x, t; z)e | x in I; 0<t<T} for

T and >0 and |zl <1, we have R(T, \, z) <% and

w .
R( T,%, 2) <R(T, A, 2) [ [e™uly, s)n(x, vs s)g(s)dyds.
. . 0 I :

“We know the integr_altex'is;s, 1s finitg, 1‘.4 and 1,7, and is a decreasing function
of .l A ;o, we choose )\0-' so't‘he'lt fhe Yalue of ’Fhe iﬁteg’ra’l is less thén -;— . This
shclaws“ 0 < R(T,XO, z) ‘5 0 for each T > 0 and lzl <1 and COﬁsequentl?
g{x, t; 2) = f(x, t; 2). Therefox;e i(x, t,z) is é unique continuous solution

to 1.9 satisfying If(x, t; z) | <1, completing the proof,
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Similar functioﬁél equations can be de;ived and so_lved for the multivariate

" generating functions

‘F.(.X, tl, .'..-’ti’]_; zl, ose ,Zn).: ) Z . P(Nt (X) = k1;~..' ;Nt (X) :.kn) Zl n

y k'l’ ey k‘n . | P
satisfying the consistancy lcondvition that for every set of positive integers

'(i_l’ ._.'.,,im), 1 <m<n,

iE‘(}{, tl’ eee § tn; Zl, oo ) zn = F(X, tl, -." ] tm; Zil’ ans y Zim)

A ) = i i ‘S‘ o i i ;Q. i .
whgre z, 1 if i ‘1 not in ( 1 s m)

§ 3. Probability for eventual extinction,

Having established the existence of a unique continuous solution f( Xy t; 2)

to 1,9 on x in I, 0 <t and |zl <1 satisfying

0 o0
3.1 f(x, t; z) = E fk(x, 1.:)zk ; Z fk(x,_t) =1

) k=0 C ’ k=0

where' each fk(x, t) is nonnegative and continuous, we formally identify the

fk(x, t) as the population transition functions for the population size Nt(x)

for a system generated by a particle initially at x., In particular se"tting z=20

in 1,9, we have
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t S
3.2 f,(% 1) = a(x,t) .+ ffh[y,s;fo(y,t-S)]p(x, vis)g(s)dyds .

where fo(x, t) formal;y inés the Prob. {Nt(x) = OINO(x) = 1}, Since fov(x, t)
is nonnegative, ‘bound_ed‘ above by 1 ‘aﬁd continuous on x in I and 0 <, A
Theorem 2.1, we know from thé uniqueness argument following 2, 8 that fo(x, t)
is a unique cqnfihuous solution to 3,2 satisfying [fo‘(x, t) [ f, 1, We will use
this ﬁniquene;s property to show fo(x, t) 1is an increasing function of t fof
each x in I, a property which is suggested by the prbbabiiity context,

We define a sequence of functions for x in I and 0 <t by go(x, ty =0
andA g l(x, t) = ’Ign(x, t) Whére T is a non=-linear operator defined by»

nt

t
3.3 Tg(x,t) = a(x,t) + f{ fh[y, s;9(yyt-s)]1p(x,v;s)g(s)ds}dy,
I 0

for a continuous function g(x, t) ~on x in I and 0 <t,

An induction argument shows each gn(x » t} is a nonnegative continuous function

bounded above by 1 on x in I and 0 <t, and it is a monotone increasing function

of t foreach x in I, The last statement follows directly from the nonnegativity
of the given functions and the nondecreasing behavior of a(x, t) as a function
of t, 1.2, With the same estimates as used in Theorem 2,1 we have

lgl(x, t) - go(x, t).[ <1 and
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: t ‘
lg (%, 0 =g (x, 1)< Ifof‘.lgn(y, t-S).-qn_l( v, t=8)| p(y, s)p(x, 5 s)g(’s) dyds .

Therefore we have by induction on n; for each T>0 ,| gn+l (x, t) -gn(x, t)|_<_ tnAn(T) /n!

fér X in I and 0 <t<T where 'A(T) 'is defined in 2.6, Using the uniqueness
of fo(x, t) as a continuous bounded solution to 3.2, 'this shAows fo(x, t) is for
eaéh T >0 the unifdfm limit as n - w for x in T and 0 <t < T of the séquence
gn(x,At) . Cohsequ'.ent_ly, fo(x, t) is a monbtone increasing function 6f t for each

x in I, Summarizing we have

3.4 fo(x, t) is a nonnegative continuous unique solution to 3.2 bounded
in magnitude by 1 and for each x in I, it is a monotone increasing

function of t.

In particular 3,4 implies tl’_i,moO fo(x, t) = fo(x) exists for each x in I,
The probability context suggests fo(x) is 'the probability for eventual extinction in
a process generated by a partiéle initially at x. If we can show £ (%, t) is; continuous
in x uniformly in t then we know fO‘(x) is éontinuous in x and therefore by

the Moore-Osgood theorem on .iterated limits

3.5 lim £ (x, t) ='f.0(x)._<~ 1

t—=> 0

uniformly for x in I. To show fo(x, t) is continuous in x uniformly in t, we

make the estimate
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l£g Gt = £ (2,00 < alieyt) - a0+ [ [Blyyssf (v, t-8)]lplx,v58) - Blx,v3s) la(s) dyds
_ o o : 01 : A o

o0

< Ia(xl,t)-a(xz,t)|+'f flp(xl,y; s) - P(x,,vis) g('s) dyds.
01 :

The uniform integrability condition 1. 7 gives the existence of a positive
v{e), 0 <e¢, such that the 2nd term is < % if le —x2| <y(§') . Since we
have assumed lim a(x,t) = a{(x) uniformly in x, 1.3, there exists a positive

8(e¢), 0 <e, such that the first term is 5% if |xl- le < 6(%) . This completes

the .argumeént and establishes A3.A 5.
Letting t—~ % in 3.2 and using 1.7 and 3.5 shows fo(x) is a continuous

solution to

0

3.6 fQ(X) =a(x) + If{ Of‘h[y, s;1,(v)]p(x, v;s)g(s)ds} dy
with 0 ffd(x) <1 for x in I. Since the function 1{x), i(x) =1 for x in I,
is a solution to 3.6 by 1.7, we have the prqblem of finding a necessary and
sufficient condition for 3.6 to have a 'nonnegative_ cont.i.ﬁuoﬁs solution different

- from 1(x) . “

We 'ldefi'ne thve nonlinear Urysohn 6pefator FU on thq'clasé of nonnégative

continuous functions bounded in'magnitude by 1 on I,
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=]

f{f_ hly, s.;f(y)]\p(X),y;S)g(S)ds}dy-

3.7 UR(x) = a(x) +
R I 0

" The proof of the next Theorem is based on the relationship between U .and the
nonlipear operator T defined in 3.3 ‘and the spectral properties of the derivative

of . U at I1(x) =1, which is defined by

0

Kf(x) = f{ f % h(vy, s;l)p(x,‘y;s)g(s)ds}f(Y) dy =.IfK.(X; y)i(y) dy,

I1°0 ’ :
where K(x, 3}) is the expected number of particles replacing at y a particle initially
at x. The transformation properties of K are given in 1.12, and,as stated
there, K has some special spectral propertie’s.

The spectral properties we want can be most easily obtained by approximating
K(x, yv) and the continuous functions on which it operates’ bﬁ/ step functiqﬁs,
forming a matrix operator with nonnegative elements to Which the Perron-Frobenius'
theory can be applied. A more general theory is develdpéd in 'tl:he monograph by
M. G. Krein and M. A. Rutman, [5]. We now list for convenience those properties
for which we have use, Specifically, assuming K(x, y) is nonnegative, not

identically zero and continuous for X,y in I, the following statements are valid.

3.8 The kernel K(x, y)has a positive characteristic number )‘0 such

that for any other characteristic number X\, \ < l)\l‘, [5; Chapter 6].

0
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A sufficient condition for XO <1 is the existence of @ nonnegative

. function £(x) such that

3.9 f(x) < [ K(x, y)i(y)dy
: I

for x in I, [5;Chapter 6].
The next properfy is a result of the asymptotic behavior of the
(n)

of the operator K when \. is less than 1.

nth iterate K 0

I A 0 <1, then for any nontrivial, nonnegative continuous function f(x) there

is some point X, in I such that

3.10 £(x,) < g"K(xo,y)f(y)dy -

We eliminate those processes having no absorption by assuming a positive

probability for a particle initially at x to be eventually absorbed at I' or in I0 s

0

3.11 0 <a(x)+'f{ f b (v, s)P(%, v; s)g(s)ds }dy
1 0

~for x in I.
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We can now state the

Theorem 3.1. Suppose the éond'itiori 3.11 is satisfied in addition to. the conditions

listed in Theorem - 2.1. A ne'cessary and sufficient condition for 3.6 to have a

poéitive continuous solution g(x) different from the function x)=1 is

where >\0 is the unique characteristic number determined by 3. 8.
‘We apply the result of Theorem 3.1 to the probability fO(x) for eventual

extinc tion defined in 3.5 and obtain the

Theoreem 3. 2. Assuming the conditions in Theorem 3.1,

(a) if )‘oil’ fo(x) = 1 for x in I and

(b) if )\0 <1, fo(x) is the minimum positive solution g(x) to 3.6.
Proof £or Theorem 3. 1. We list some prdperties for the operator U which are direct
resultss of the strict monotonicity of h(y,s;T) as'afunctionof- T on 0 <7 <1

and th € normalization 1.7. Letting T= {x in'Ila(x) =1} andI-J= {x in Ila(x) <1},
- we the nn'have the fdllowing_fdr any nonhegative contin'uous‘fun‘ction f(x) which is

hounde=d above 'by. 1 and not identically 1,
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3,13 Uf(x)=1 for x in J and
Uf(x) <1 for x in I-7.

Suppose g(x) is a solution to 3.6, g(x) = Ug(x) . Then 3,13 implies
1 - g(x) is positive for x in I -J. Since 1(x) = Ul(x), L7, 1.11 and 2.1

imply

o0

3.14 0 <1l-g(x)=f{[1-hly,s;9(v)]Ip(x,v;s)g(s)ds}dy
‘ I 0

< fI1-g(y)]K(x, ¥) dy
I

for x in I -J. Therefore by 3.9, the characteristic number )\0 for K(x,v),

determined by 3. 8, satisfies \ < 1, proving the necessity of the condition.

0

To prove the sufficiency, we define go(x) =0 and -
3.15 =T
9 410X g (%) .

for x in I.  We have gr;(x) =1 for x in T, 3.13. Using the strict montonicity

of h(y,s;T) in "T on 0<T E 1, we have
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3.16 Uf(x) < Ug(x)

for x in. I -J when f(x) <g(x) on I -7J. Assumption 3.11 and property 3.13
imply 0 <gl (x) <1 on I ~7J; and so, 3.16 implies gl(x) =Ug0(x) <Ugl(x)= gz(x)

on I~-J. By inductionon n, we havefor n=1, 2, 3, ...
3.1 0 < x) < <1
7 g (%) <g . (=)

for x In I -7,
The inequality

9 (%) =g ()< laee) -atx,) 1+ IfIK(xl, y) = K(x, , y) | ay

and the continuity of K(x,y) show gn(x) is continuous in x uniformly in n.

This and 3.17 imply the existence of
3,18 lim g (x) = g(x)
n-~+ <« n

uniformly for x in I, Therefore letting n-- « in 3.15 shows g(x) isa
continuous solution to 3.6 satisfying 0 <g(x) <1 for x in I -] ond g(x) =1
for x in 7J.

We now show g(x) is different from 1(x) =1 when )\0 <1l. Tor this
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purpose we introduce the collection of kernels defined by

&)

K(x, y;7) = [
0

3
37 by, 85 T) p(x, y;58) g(s) ds

for X,y in I and 0 <7 < 1; sothat K(x,y;1)=K(x, y), defined in 1.11.
We use the assumptions in 1.1, 1.3, 1.4 and 1.7 to state K(x,y;T) is
nonnegative and continuous for x,y in I and 0 <7 < 1. Since p(y,s) is
positive on its domain, K(x,y;T) and the kernel

o0

P(x,v)= [ plx, v;s) g(s)ds
0
vanish together,

Each kernel K(x, y; T) has a positive characteristic number )\O‘(T)
determined by 3.8. Using the continuity properties of K(x, y; T) in X,y and T
and the Fredholm theory for integral operators with continuous kernels, we can
show that the Fredholm determinant d(\; 7) for K(x, y;T),l where \ is the
spectral parameter, is a continuous function for || <% and 0 <7 <1 'and an
entire function of N for fixed 7. This is sufficient to assert )\O(T) is a
continuéus functionon - 0 <7 < 1. This and the assumptiQn on ‘)\0( 1) < 1

- imply the existence ofa T

) <1 such that )\O(T) <1 for T, ST <1, Wenow

develop a contradiction from the assumption g(x) = 1(x) ‘. If this be valid, the

uniform convergence of g.n( x) to g(x), 3. 18, implies the existence of a positive
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l-T
integer N(Tl) such that gn(x) is uniformly close to 1(x) ,gn(x) > Tl +—?—l ,

for n > N(7 Therefore using the mean value theorem and the strict monotonicity of

1)'

9 .
-{Fh(y, s;T) as a function of T, we have
319 (L-gy (x) > If(l. - () K%, y57)) dy

for x in I -J. Assuming )xO(Tl) <1, property 3.10 gives the existence of

some XO in I such that

If(l - gy (YK, viT)dy > 1 - g (%) .

Since K(x, y;Tl) and P(x,y) vanish together, we know x_ isin I -J. Therefore

0
this and 3. 19 imply

1 (x.),

> -
(XO) 1 gN(xo) or g N %o

- <
IN+1 N+1(%g) <9

contradicting 3.17. Consequently, g(x) is different from 1(x) when )\0 <1,
proving the sufficiency of the condition.

The operators U and T have a structural relation which is utilized

for the proof,of Theorem 3. 2.
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Proof for Theorem 3.2. If >\0 > 1, the results of Theorem 3.1 assert fo(x)= 1,

x in I, proving (a). To prove (b), we recall the probability for eventual extinction
is given by fo(x) = lim fo(x, t) as t—> 0, 3,5, We have also shown

f(x,t) = lim Tgn(x, t) as n—~ © with the operator T and the functions gn(x, t)
defined in 3.3. The operator T has a monotone property similar to that for the

operator U, 3.16, Itis
3.20 Ti(x, t) <Tg(x, t)

for x in I-7 and 0 <t if f(x,t) <g(x,t) on the same set. Since go(x,t)EO

and a(x,t) <a(x), 1.2, we have
= i < =
g (%, 1) =Tg (%, 1) SUg(x) =g,(x)
for x in I -7 and 0 <t <%, and so, an induction argument using 3.20 gives

(x,t) =Tg (x,t) <Ug (x) =g ,,(x)

n+l ntl

on the same set, where the gn(x, t) are given by 3. 3 and the gn( X) by 3.15.

Therefore we have
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3.21 fo(x, t) = 1’1limoogn(x,t) fn}imoogn(x) = g(x) and

fO(X)= tgg;fo(x,t),f g(x)

for x in I where g(x) is defined in 3.18.

We next show that g(x) is the minimal positive solution to 3.6 .
Suppose h(x) 1is a continuous solution to 3.6 satisfying 0 < h(x) <1 for

x in I.Using the monotone property 3.16 for U, we have
9,(x) = Ug,(x) < Uh(x) =h(x)
for x in I; and so using induction, for each n

9.4,(%) = Ug (%) <Uh(x) = h(x)

nt+l

for x in I. This result shows 1ir£1°= gn(x) = g(x) < h(x) . Therefore 3.21 implies
n—- -
fo(x) = g(x) on I, completing the characterization of fo(‘x) as the minimal

positive solution to 3. 6.
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